2024

  1. A.S. Kim, A. Goswami, M. Taghinejad, and Wenshan Cai, “Phototransformation of achiral metasurfaces into handedness-selectable transient chiral media,” Proceedings of the National Academy of Sciences , Vol. 121, No. 13:e2318713121, (2024).
  2. 2023

  3. A.S. Kim, M. Taghinejad, A. Goswami, L. Raju ,K.-T. Lee, and Wenshan Cai, “Tailored Dispersion of Spectro-Temporal Dynamics in Hot-Carrier Plasmonics,” Advanced Science (Weinh) , Vol. 10, No. 8:e2205434, (2023).
  4. 2022

  5. D. Zhu, and Wenshan Cai, “Fast Non-Line-Of-Sight Imaging with Two-Step Deep Remapping,” ACS Photonics , Vol. 9, No. 6, 2046–2055 (2022).
  6. K.-T. Lee, B. Kim, L. Raju, S. P. Rodrigues, D.-H. Ko, and Wenshan Cai, “Enantiomer-Selective Molecular Sensing in the Nonlinear Optical Regime via Upconverting Chiral Metamaterials,” Advanced Functional Matterials, Vol. 32, No. 43, 2208641 (2022).
  7. L. Raju, K.-T. Lee, Z. Liu, D. Zhu, M. Zhu, E. Poutrina, A. Urbas, and Wenshan Cai, “Maximized frequency doubling through the inverse design of nonlinear metamaterials,” ACS Nano, in press (2022).
  8. X. Liu, B. Mao, X. Yang, M. Taghinejad, M. Panmai, S. Lan, Wenshan Cai, J. Yan, and B. Li, “Engineering radiative energy transfer and directional excitonic emission in van der Waals heterostructures,” Laser & Photonics Reviews, in press (2022).
  9. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, A. Krasnok, A.A. Eftekhar, C. Teichrib, S. Deshmukh, M. El-Sayed, E. Pop, M. Wuttig, A. Alu, Wenshan Cai, and A. Adibi, “Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency,” Nature Communications, in press (2022).
  10. C. Yang, B. Zhao, Wenshan Cai, and Z. Zhang, “Mid-infrared broadband circular polarizer based on Weyl semimetals,” Optical Express, Vol. 30, No. 2, 3035-3046 (2022).
  11. 2021

  12. Wenshan Cai, Y. Liu, J. Rho, H. Suchowski, and P. Wiecha, “Artificial intelligence meets engineered photonic materials: Introduction to special issue,” Optical Materials Express, Vol. 11, No. 10, 3431-3432 (2021).
  13. B. Kim, K.-T. Lee, J. Cho, N. A. Darshanoju, K. Jung, I.-H. Ahn, J.-M. Shin, H. Oh, Y. Ki, H. Lee, S. J. Kwon, I. S. Kim, Wenshan Cai, K.-H. Ahn, and D.-H. Ko, “Reversible photochemical switching via plasmonically enhanced upconversion photoluminescence,” Advanced Optical Materials, Vol. 9, No. 17, 2100776 (2021).
  14. S. Min, S. Li, Z. Zhu, Y. Liu, C. Liang, J. Cai, F. Han, Y. Li, Wenshan Cai, X. Cheng, and W.-D. Li, “Ultrasensitive molecular detection by imaging of centimeter-scale metasurfaces with a deterministic gradient geometry,” Advanced Materials, Vol. 33, No. 29, 2100270 (2021).
  15. R. Zhang, K. Yang, Z. Liu, T. Liu, Wenshan Cai, and L. Milor, “A comprehensive framework for analysis of time-dependent performance-reliability degradation of SRAM cache memory,” IEEE Transactions on Very Large Scale Integration Systems, Vol. 29, No. 5, 857-870 (2021).
  16. D. Zhu, Z. Liu, L. Raju, A. S. Kim, and Wenshan Cai, “Building multifunctional meta-systems via algorithmic construction,” ACS Nano, Vol. 15, No. 2, 2318-2326 (2021).
  17. S. Abdollahramezani, O. Hemmatyar, M. Taghinejad, H. Taghinejad, Y. Kiarashinejad, M. Zandehshahvar, T. Fan, S. Deshmukh, A. A. Eftekhar, Wenshan Cai, E. Pop, M. A. El-Sayed, and Ali, Adibi, “Dynamic hybrid metasurfaces,” Nano Letters, Vol. 21, No. 3, 1238-1245 (2021).
  18. Z. Liu, D. Zhu, L. Raju, and Wenshan Cai, “Tackling photonic inverse design with machine learning,” Advanced Science, Vol. 8, No. 5, 2002923 (2021).
  19. W. Ma, Z. Liu, Z. A. Kudyshev, A. Boltasseva, Wenshan Cai, and Y. Liu, “Deep learning for the design of photonic structures,” Nature Photonics, Vol. 15, No. 2, 77-90 (2021).
  20. 2020

  21. Y. Wang, J. Yu, Y.-F. Mao, J. Chen, S. Wang, H.-Z. Chen, Y. Zhang, S.-Y. Wang, X. Chen, T. Li, L. Zhou, R.-M. Ma, S. Zhu, Wenshan Cai, and J. Zhu, “Stable, high-performance sodium-based plasmonic devices in the near infrared,” Nature, Vol. 581, No. 7809, 401-405 (2020).
  22. H. Taghinejad, M. Taghinejad, A. A. Eftekhar, Z. Li, M. P. West, M. H. Javani, S. Abdollahramezani, X. Zhang, M. Tian, T. Johnson-Averette, P. M. Ajayan, E. M. Vogel, S.-F. Shi, Wenshan Cai, and A. Adibi, “Synthetic engineering of morphology and electronic band gap in lateral heterostructures of monolayer transition metal dichalcogenides,” ACS Nano, Vol. 14, No. 5, 6323-6330 (2020).
  23. Z. Liu, Z. Zhu, and Wenshan Cai, “Topological encoding method for data-driven photonics inverse design,” Optics Express, Vol. 28, No. 4, 4825-4835 (2020).
  24. Z. Liu, L. Raju, D. Zhu, and Wenshan Cai, “A hybrid strategy for the discovery and design of photonic structures,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol. 10, No. 1, 126-135 (2020).
  25. M. Taghinejad, Z. Xu, H. Wang, H. Taghinejad, K.-T. Lee, S. P. Rodrigues, A. Adibi, X. Qian, T. Lian, and Wenshan Cai, “Photocarrier-Induced Active Control of Second-Order Optical Nonlinearity in Monolayer MoS2,” Small, Vol. 16, No. 5, 1906347 (2020).
  26. M. Taghinejad, Z. Xu, K.-T. Lee, T. Lian, and Wenshan Cai, “Transient second-order nonlinear media: Breaking the spatial symmetry in the time domain via hot-electron transfer,” Physical Review Letters, Vol. 124, No. 1, 013901 (2020).
  27. Z. Liu, D. Zhu, K.-T. Lee, A. S. Kim, L. Raju, and Wenshan Cai, “Compounding meta-atoms into meta-molecules with hybrid artificial intelligence techniques,” Advanced Materials, Vol. 32, No. 6, 1904790 (2020).
  28. 2019

  29. R. Zhang, Z. Liu, K. Yang, T. Liu, Wenshan Cai, and L. Milor, “Impact of front-end wearout mechanisms on FinFET SRAM soft error rate,” Microelectronics Reliability, Vol. 100-101, 113487 (2019).
  30. R. Zhang, Z. Liu, K. Yang, T. Liu, Wenshan Cai, and L. Milor, “A library based on deep neural networks for modeling the degradation of FinFET SRAM performance metrics due to aging,” Microelectronics Reliability, Vol. 100-101, 113486 (2019).
  31. K.-T. Lee, M. Taghinejad, J. Yan, A. Kim, L. Raju, D. Brown, and Wenshan Cai, “Electrically biased silicon metasurfaces with magnetic Mie resonance for tunable harmonic generation of light,” ACS Photonics, Vol. 6, No. 11, 2663-2670 (2019).
  32. J. Qin, Y. Liu, H. Luo, Z. Jiang, Wenshan Cai, and L. Wang, “Tunable light emission by electrically excited plasmonic antenna,” ACS Photonics, Vol. 6, No. 10, 2392-2396 (2019).
  33. M. Taghinejad and Wenshan Cai, “All-optical control of light in micro- and nanophotonics,” ACS Photonics, Vol. 6, No. 5, 1082-1093 (2019).
  34. S. Lan, X. Zhang, M. Taghinejad, S. P. Rodrigues, K.-T. Lee, Z. Liu, and Wenshan Cai, “Metasurfaces for near-eye augmented reality,” ACS Photonics, Vol. 6, No. 4, 864-870 (2019).
  35. 2018

  36. Y. Jin, L. Zhou, J. Yu, J. Liang, Wenshan Cai, H. Zhang, S. Zhu, and J. Zhu, “In operando plasmonic monitoring of electrochemical evolution of lithium metal,” Proceedings of the National Academy of Sciences of the United States of America (PNAS) , Vol. 115, No. 44, 11168-11173 (2018).
  37. Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and Wenshan Cai, “Generative model for the inverse design of metasurfaces,” Nano Letters , Vol. 18, No. 10, 6570-6576 (2018).
  38. M. Taghinejad, H. Taghinejad, Z. Xu, K.-T. Lee, S. P. Rodrigues, J. Yan, A. Adibi, T. Lian, and Wenshan Cai, “Ultrafast control of phase and polarization of light expedited by hot-electron transfer,” Nano Letters, Vol. 18, No. 9, 5544-5551 (2018).
  39. J. Cai, Z. Zhu, P. F. A. Alkemade, E. van Veldhoven, Q. Wang, H. Ge, S. P. Rodrigues, Wenshan Cai, and W.-D. Li, “3D volumetric energy deposition of focused helium ion beam lithography: visualization, modeling, and applications in nanofabrication,” Advanced Materials Interfaces, Vol. 5, No. 12, 1800203 (2018).
  40. M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K.-T. Lee, T. Lian, A. Adibi, and Wenshan Cai, “Hot-electron assisted femtosecond all-optical modulation in plasmonics,” Advanced Materials, Vol. 30, No. 9, 1704915 (2018).
  41. 2017

  42. L. Kang, S. P. Rodrigues, M. Taghinejad, S. Lan, K.-T. Lee, Y. Liu, D. H. Werner, A. M. Urbas, and Wenshan Cai, “Preserving spin states upon reflection: Linear and nonlinear responses of a chiral meta-mirror,” Nano Letters, Vol. 17, No. 11, 7102-7109 (2017).
  43. N. Zhang, W. Sun, S. P. Rodrigues, K. Wang, Z. Gu, S. Wang, Wenshan Cai, S. Xiao, and Q. Song, “Highly reproducible organometallic halide perovskite microdevices based on top-down lithography,” Advanced Materials, Vol. 29, 1606205 (2017).
  44. S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, P. W. Panuski, S. Wang, A. M. Urbas, and Wenshan Cai, “Intensity-dependent modulation of optically active signals in a chiral metamaterial,” Nature Communications, Vol. 8, 14602 (2017).
  45. S. Lan, S. P. Rodrigues, M. Taghinejad, and Wenshan Cai, “Dark plasmonic modes in diatomic gratings for plasmoelectronics,” Laser & Photonics Reviews, Vol. 11, 1600312 (2017).
  46. 2016

  47. Z. Wang, H, Jia, K. Yao, Wenshan Cai, H. Chen, and Y. Liu, “Circular dichroism metamirrors with near-perfect extinction,” ACS Photonics, Vol. 3, No. 11, 2096–2101 (2016).
  48. S. Lan, Sean P. Rodrigues, Y. Cui, L. Kang, W. Cai, “Electrically tunable harmonic generation of light from plasmonic structures in electrolytes,” Nano Letters, Vol. 16, No. 8, 5074-5079 (2016).
  49. S. Lan, Sean P. Rodrigues, L. Kang, W. Cai, “Visualizing optical phase anisotropy in black phosphorus,” ACS Photonics, Vol. 3, No. 7, 1176-1181 (2016).
  50. L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, Wenshan Cai, S. Zhu, and J. Zhu, “3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination,” Nature Photonics, Vol. 10, No. 6, 393-398 (2016).
  51. 2015

  52. S. Lan, L. Kang, D. T. Schoen, Sean P. Rodrigues, Y. Cui, M. L. Brongersma, W. Cai, “Backward phase-matching for nonlinear optical generation in negative-index materials,” Nature Materials, Vol. 14, No. 8, 807-811 (2015).

  53. L. Kang, S. Lan, Y. Cui, Sean P. Rodrigues, Y. Liu, D. H. Werner, W. Cai, “An active metamaterial platform for chiral responsive optoelectronics,” Advanced Materials, Vol. 27, No. 29, 4377-4383 (2015).
  54. S. P. Rodrigues and Wenshan Cai, "Nonlinear optics: Tuning harmonics with excitons," Nature Nanotechnology, Vol. 10, No. 5, 387-388 (2015).
  55. S. P. Rodrigues, Y. Cui, S. Lan, L. Kang, and Wenshan Cai, "Metamaterials enable chiral-selective enhancement of two-photon luminescence from quantum emitters," Advanced Materials, Vol. 27, No. 6, 1124-1130 (2015).
  56. 2014

  57. L. Kang, Y. Cui, S. Lan, S. P. Rodrigues, M. L. Brongersma, and Wenshan Cai, "Electrifying photonic metamaterials for tunable nonlinear optics," Nature Communications, Vol. 5, 4680 (2014).
  58. S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, and Wenshan Cai, "Nonlinear imaging and spectroscopy of chiral metamaterials," Advanced Materials, Vol. 26, No. 35, 6157-6162 (2014).
  59. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and Wenshan Cai, "Giant chiral optical response from a twisted-arc metamaterial," Nano Letters, Vol. 14, No. 2, 1021-1025 (2014).
  60. 2013

  61. W. Shin, Wenshan Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, "Broadband sharp 90-degree bends and T-splitters in plasmonic coaxial waveguides," Nano Letters, Vol. 13, No. 10, 4753-4758 (2013).
  62. Wenshan Cai, "Viewpoint: Metal-coated waveguide stretches wavelengths to infinity (invited)," Physics, Vol. 6, No. 1, DOI: 10.1103/Physics.6.1 (2013).
  63. 2012

  64. F. Afshinmanesh, J. S. White, Wenshan Cai, and M. L. Brongersma, "Measurement of the polarization state of light using an integrated plasmonic polarimeter," Nanophotonics, Vol. 1, No. 2, 125-129 (2012).
  65. E. C. Garnett, Wenshan Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. G. Christoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, "Self-limited plasmonic welding of silver nanowire junctions," Nature Materials, Vol. 11, No. 3, 241-249 (2012).
  66. Wenshan Cai, Y. C. Jun, and M. L. Brongersma, "Electrical control of plasmonic nanodevices," SPIE Newsroom, DOI: 10.1117/2.1201112.004060 (2012).
  67. 2011

  68. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, Wenshan Cai, and M. L. Brongersma, "A submicron plasmonic dichroic splitter," Nature Communications, Vol. 2, 525 (2011).
  69. Wenshan Cai, A. P. Vasudev, and M. L. Brongersma, "Electrically controlled nonlinear generation of light with plasmonics," Science, Vol. 333, No. 6050, 1720-1723 (2011).
  70. Wenshan Cai and V. M. Shalaev, "Into the visible," Physics World, Vol. 24, No. 7, 30-34 (2011).
  71. I-K. Ding, J. Zhu, Wenshan Cai, S.-J. Moon, N. Cai, P. Wang, S. M. Zakeeruddin, M. Grätzel, M. L. Brongersma, Y. Cui, and M. D. Mcgehee, "Plasmonic dye-sensitized solar cells," Advanced Energy Materials, Vol. 1, No.1, 52-57 (2011).
  72. 2010

  73. Wenshan Cai, W. Shin, S. Fan, and M. L. Brongersma, "Elements for plasmonic nanocircuits with three-dimensional slot waveguides," Advanced Materials, Vol. 22, No.45, 5120-5124 (2010).
  74. Wenshan Cai and M. L. Brongersma, "Plasmonics gets transformed," Nature Nanotechnology, Vol. 5, No.7, 485-486 (2010).
  75. R. D. Kekatpure, E. S. Barnard, Wenshan Cai, and M. L. Brongersma, "Phase-coupled plasmon-induced transparency," Physical Review Letters, Vol. 104, 243902 (2010).
  76. J. A. Schuller, E. S. Barnard, Wenshan Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Materials, Vol. 9, No. 3, 193-204 (2010).
  77. L. Cao, P. Fan, A. Vasudev, J. S. White, Z. Yu, Wenshan Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, "Semiconductor nanowire optical antenna solar absorbers," Nano Letters, Vol. 10, No. 2, 439-445 (2010).
  78. 2009

  79. Wenshan Cai, J. S. White, M. L. Brongersma, "Compact, high-speed and power-efficient electrooptic plasmonic modulators," Nano Letters, Vol. 9, No. 12, 4403-4411 (2009).
  80. 2008

  81. A. V. Kildishev, Wenshan Cai, U. K. Chettiar, and V. M. Shalaev, "Transformation optics: approaching broadband electromagnetic cloaking," New Journal of Physics, Vol. 10, 115029 (2008).
  82. U. K. Chettiar, S. Xiao, A. V. Kildishev, Wenshan Cai, H.-K. Yuan, V. P. Drachev, and V. M. Shalaev, "Optical Metamagnetism and Negative-Index Metamaterials," MRS Bulletin, Vol. 33, No. 10, 921-926 (2008).
  83. Wenshan Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Optics Express, Vol. 16, No. 8, 5444-5452 (2008).
  84. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, Wenshan Cai, and V. M. Shalaev, "The Ag dielectric function in plasmonic metamaterials," Optics Express, Vol. 16, No. 2, 1186-1195 (2008).
  85. 2007

  86. Wenshan Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. M. Milton, "Nonmagnetic cloak with minimized scattering," Applied Physics Letters, Vol. 91, 111105 (2007).
  87. U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, Wenshan Cai, S. Xiao, V. P. Drachev, and V. M. Shalaev, "Dual-band negative index metamaterial: double-negative at 813 nm and single-negative at 772 nm," Optics Letters, Vol. 32, No. 12, 1671-1673 (2007).
  88. Wenshan Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics, Vol. 1, No. 4, 224-227 (2007). [Cover article]
  89. Wenshan Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Metamagnetics with rainbow colors," Optics Express, Vol. 15, No. 6, 3333-3341 (2007).
  90. H.-K. Yuan, U. K. Chettiar, Wenshan Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, "A negative permeability material at red light," Optics Express, Vol. 15, No. 3, 1076-1083 (2007).
  91. 2006

  92. A. V. Kildishev, Wenshan Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, "Negative refractive index in optics of metal-dielectric composites," Journal of the Optical Society of America B, Vol. 23, No. 3, 423-433 (2006).
  93. V. P. Drachev, Wenshan Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, A. V. Kildishev, G. Klimeck, and V. M. Shalaev, "Experimental verification of an optical negative-index material," Laser Physics Letters, Vol. 3, No. 1, 49-55 (2006).
  94. 2005

  95. Wenshan Cai, D. A. Genov and V. M. Shalaev, "Superlens based on metal-dielectric composites," Physical Review B, Vol. 72, 193101 (2005).
  96. V. M. Shalaev, Wenshan Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Optics Letters, Vol. 30, No. 24, 3356-3358 (2005).
  97. 2004 and before

  98. Wenshan Cai, Y. Dong, X. Jia, J. Wang, H. Wang, L. Lu, and S. Xie, "Enhanced performance with optimized input power and increased dynamic range for wavelength conversion using four-wave-mixing in SOAs," Optics Communications, Vol. 193, 245-251 (2001).
  99. Y. Dong, Wenshan Cai, M. Zou, Q. Zhang, M. Yao, and S. Xie, "Suppression of waveform distortion in a semiconductor optical amplifier using birefringence and slope filtering," Electronics Letters, Vol. 37, No. 11, 704-705 (2001).
  100. Y. Dong, Wenshan Cai, X. Jia, H. Wang, L. Lu, and S. Xie, "Noninverted wavelength conversion with signal improvement and chirp compression utilizing birefringence in SOAs," Optics Communications, Vol. 191, 229-234 (2001).
  101. Q. Xu, Y. Dong, M. Yao, Wenshan Cai, and J. Zhang, "Experimental demonstration of pattern effect compensation using an asymmetrical Mach-Zehnder interferometer with SOAs," IEEE Photonics Technology Letters, Vol. 13, No. 12, 1325-1327 (2001).
  102. Wenshan Cai, Y. Dong, J. Wang, and S. Xie, "Effects of gain modulation on wavelength conversion using FWM in semiconductor optical amplifiers," Journal of the Korean Physical Society, Vol. 39, S237-S241, (2001).
  103. J. Wang, Y. Dong, Wenshan Cai, J. Yan, Y. Ma, X. Jia, M. Zou, and S. Xie, "Programmable optical add/drop multiplexer with enhanced temperature sensitivity," Optics communications, Vol. 200, 153-157 (2001).
  104. Y. Dong, J. Wang, X. Jia, Wenshan Cai, and S. Xie, "Birefringence in semiconductor optical amplifiers and its application to all optical noninverted wavelength conversion," Journal of the Korean Physical Society, Vol. 39, S415-S418, (2001).
  105. L. Lu, Y. Dong, H. Wang, Wenshan Cai, and S. Xie, "Bit-error-rate performance dependence on pump and signal powers of the wavelength converter based on FWM in semiconductor optical amplifiers," IEEE Photonics Technology Letters, Vol. 12, No. 7, 855-857 (2000).